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UNSYMMETRICAL BUCKLING OF THIN SHALLOW SPHERICAL SHELLS

by
Nai-Chien Huang

INTRODUCTION

This paper is concerned with the theoratical study of buckling of clamped
shallow spherical shells under uniform external pressure (Figure 1). For
sufficiently large deflection, deformations of such shells are not proportional
to the applied pressure. The shell deforms axisymmetrically under sufficiently
low pressure and if we assume that the deflectior ramains axisymmetrical, the
pressure-deflection relation may be represented by a curve such as OAB 1in

Figure 2. At the maximum pressure q the shell tends to jump from A to

cr ’
B. 8o L P is the buckling pressurs for axisymmetrical snapping. The problem
of axisymmetrical snapping has been solved by different numerical methods in
References (1-4) and the results agree with each other and are represented by

the curve in Figure 3. As shown in Figure 3, the buckling pressures obtained

in such a manner are too high as compared with experimental results obtained in
References (5-6). Iritial imparfections of the shell and ursymmetrical buckling
are presumed to be the sources of this discrepancy betwean axisymmetrical buckling
theory and experiment. Unsymmetrical deformation could conceivably start to
develop at point C 1in Figure 2. After unsymmetrical deformation has been

superimposed, the pressure-deflection curve might be represented by a branch

CD or CE at C as shown. The pressure at C 1is defined as the critical

This work was sponsored by the Office of Naval Research under Contract
Nonr 1866(02).
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pressure for unsymmetrical buckling. Grigolyuk applied the Galerkin method
to solve the problem of unsymmetrical buckling, but no numerical results were

(8) 9)

given in his work. Gjelsvik and Bodner and Parmerter and Fung worked on
this problem by the energy method and numerical calculations were carried out
only for a particular unsymmetrical buckling mode. Heinitnchko(lo) used a power
series method to solve this problem and obtained extensive numerical results,
but, as will be shown, the buckling pressures obtained in his work are in serious

disagreement with the results of this paper.

BASIC EQUATIONS OF SHALLOW SPHERICAL SHELLS

A shell is called '"thin" 1if the ratio of its thickness to the radius of
curvature of its middle surface is much less than unity; and a spherical shell
is called "shallow" if the ratio of 1t; rise at the center to the base dismeter
is less than, say, 1/8 . The middle surface of a shallow spherical shell can

be represented by the paraboloid
ry2
£ = H[1-(D)°] (1)

where H 1is the rise of the middle surface at the center and a 1is the base

radius, as shown in Figure 1. The radius of curvature of the shell is

R =25 . (2)

The stress resultants and bending moments per unit length of the shell are

shown in Figure 4, where Nr » Na and Nre are membrane forces respectively;

L N L LT T T W P A R R L L Lo -

Numbers in the raised parenthesis refer to the references at the end of
this report.
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Qr‘ and QB are transverse shears and Mr , M, and Mt are meridional,

8 ]
circumferential and twisting moments respectively. Let U , V and W be the

horizontal radial, horizontal tangential and vertical components of displace-
ment respectively (Fig. 4) and let q be the external pressure which can be
considered to be vertical.

In the following equations, we use the notations
() m() amd ) e&O)
or o8
Equilibrium of moments requires

(rHr)' + ﬁr - Me - rQr =0 (3)

(rnre)' +Mg +M - 1Q =0 %)

Equilibrium of stress resultants requires

(xR)' + N, - N =0 )
(rNre)' + Ne + Nl‘e =0 (6)
[EN_(W-2)' + N (Hz) + (£Q)']" + [T Ny(Wz) + N y(-2)' + Q) +ra=0 (D)

Note that nonlinearity has been introduced in Eq. (7) by considering the
influence of W .

The stress strain relations are

€. = -tlE(Nr-VNa) (8)
1

€ = ;E(Ne-er) (9)

Yre = : i:v Nre (10)

M‘r - D(nr+v KO‘) ) (11)




4=

¥, = D(ne+v nr) (12)

M, = (1-V)Dx_ (13)

ré 8

where Kk and v are the elastic modulus and Poisson's ratio respectively; t

lt3

12(1-42)

The strain displacement relations are also nonlinear

stands for the thickness of the shell and D =

- ' « o'Y! 1042
cr 1) z'W' + Z(V ) R (14)
1y, log Lo, 1le2
g Utz V lrzzw-fz(l_w) (15)
l1es_ 1 S ST ST 1
YrO - 1} . v+vV = FA) s L W+ p wW (16)
= =W
nr W (17)
.-l_"_.ll
Xq Z W= W (18)
r
= - (19)
rd T

Equations (5) and (6) can be satisfied by setting

1 1 -
Nr-;l?"l- ZP (20)
r
NS = F (21)
N, = -G8 (22)
11:] r

where F 1is a stress function.
Eliminating the transverse shears Qr and Qe from Eqs. (3), (4) and (7),

we have

[(rHr)' + i‘re - “e]' +% [(rnre)' + ﬁe + nre] + rNr(H-z)" + Ne[%(;.:;) + (W-g)']

+ 20 (W) - 2@ +q =0 @3
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Then the equation of equilibrium obtained by direct substitution is
pPFH = G r 4 s By un) + L D) + 2 P )
r r

1

.01 .,
3 F)(; g' -
r

" (=

+2(-}i"- ﬁ'-—1-2-£+-1—2i1)+q (24)
r

r

where Vz( Y= ()" + %( )+ l;(:) .
r

Using Eqs. (8)-(10) and (20)-(22), we can show that

l n._l.
r(ree) c

e oL oy gL L -l
r % ° rz(rYre) o T ke vz(Nr+Ne) Et e (25)

2
r
Substituting Eqs. (14)=(16) into the left hand side, we get another

fundamental equation involving F and

Ly
2
T

LA

v*r = Kt {-z(% - nde-Lonsedw e Lipewda s
r r r r
Liv oL g2 owdw sl g
+ (r W' rz w) w'(r W+ rz wi} (26)

which is the compatibility equation of shallow spherical shells.
Substituting Eq. (1) into Eqs. (24) and (26), we get Marguere's nonlinear
(11)

differential equations in polar coordinates for shallow spherical shells

under uniform pressure,

nv‘w-%vzr+(%r'+fzi)w"+(%w' +§i‘i)r" -2(%-1*l -:—ii)(%fi' -;17&)+q
(27)
Premp-Pus o - Lo dw s i (28)

T r

Let us introduce the following nondimensional quantities:
A = 203019 1M ey 12

X-Al‘
a




p-

3
where q, = 32§H4t is the classical buckling pressure of a complete spherical

Aa .
shell of the same radius of curvature and thickness. Then the nondimensional

forms of Eqs. (27) and (28) are

V‘w-sz+(’—tY'+i—2'§)w"+(%v'+-,]"—2ii)!"'-2(i.¥'-??)(ii'-ii\'v)-i-l&p
29)
Pra-Fur G -Lin?-dv o+ (309
x x
ere ()' ®32() and V()= CH+ 5477 2 :
ox x~ J8
The edge of the shell is completely clamped; therefore, on the boundary
r =a , wve have
W=0 (31)
W' =0 ' (32)
U=0 (33)
V=0 (34)

From the last two boundary conditions, we can show by the strain displace-

ment relations that

€g = 0 (35)

| - - »
acy - €, 7:6 0 (36)

on the boundary r = a .
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Expressed in terms of the stress function, these equations become

¥ LY

P-TF X Fao , (37)

@ e tp s Fy clp Ll Fy s 2aend F) -0 (38)
r 2 a ‘2 r

T . .

on r = a .

The nondimensional forms of Eqs. (31), (32), (33) and (34) are

w=0 (39)
w'=0 . (40)
veJy - L ¥ao (41)
A |
A -ty sy oty LY s2aid B .o (42)
x 2 X 2 x

on x = ) .
In addition, at the center of the shell, w and Y wmust fulfil the require-

ment of finity .resses.

GOVERNING EQUATIONS FOR BUCKLING OF CLAMPED SHALLOW SPHERICAL SHELLS

As mentioned before, the shell necessarily deforms axisymmetrically only
under sufficiently low pressure. The pressure might reach a critical limit
(point C 1in Fig. 2) such that the shell bifurcates from an axisymmetrical
deformation path to one of unsymmetrical deformation.
Just after bifurca;ion, the functions w end Y can be written as
v = av(x) + w(x,0) (43)
Y = y*(x) + ¥(x,0) (44)

where w*(x) and ¥*(x) are the nondimensionsl vertical deflection and the
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nondimensional stress function just before buckling and hence are axisymmetrical;
o(x,8) and Vy(x,8) are due to unsymmetrical buckling and these are considered
to be infinitesimally small at the beginning of unsymmetrical buckling. From

Eqs. (29) and (30), we have
Viox » Pyx 4 Lyaran 4 2yt 4+ 4p 45)
. v“y* - P - i ket k™ . (46)

Put g% = -q' and .Q* = y*'  Eqs. (45) and (46) can be written, after

one integration, as

O R L e | “7)
prt)t - B s o - 2 e (48)
. Also, the boundary conditions can be reduced to
B*(A) = 0 | (49)
AB*T (L) - va*(A) = 0 : (50)

These are the governing equatibna of the symmetrical problem which has been
solved numerically in References l-4.
Substituting Bqs. (43) and (44) into Eqs. (29) and (30) and using Eqs. (45)

and (46), we obtain

Poey- Gy s ? er 4 Lo - Jyren v Gor e i; ) (51)
e Por Co + s pen +Laer (52)

x

where only the linear terms in w and ¥ have been retained. These are two
linear differential equations for the functions «w and ¥ . Hence our problem
has been reduced to an eigenvalue problem where the eigenvalue p is implicit

and involved in the solution 6* and $#* of the nonlinear problem as defined




by Eqs. (47)-(50).

Let
w(x,0) = z a)n(x)c‘oa nd : (53)
n=0 : '
V(x,0) = Z ¥, (x)cos no (54)
n=0 : : '
2 ' 2
d l14d n ) 2 -
'Ln()'(d—x2'+’;a'x—2)(). Ln() LnLn()

Substituting Eqs. (53) and (54) into (51) and (52), we have, for each n ,

% S SFIE CNEUINS S SR SIS appeee (55)
nn n*n X 'n x2 n X n X 'n X n x2 n ’
1y =10 +CEa -“—Zm)e*'+—1-a>"e* . (56)
nn nn X na x2 n X n _

The boundary conditions can be derived from Eqs. (39)-(42). These are

w (A) =0 o (57)
u);(k) =0 A ’ ‘ (58)
" vV o V nzv ' o
*n‘o‘).' X *n()\_) + )‘T Vn('k) =0 . : ‘ . (59)
e 1 . ; 2 ! 3n2 - . N
SR SR R Ry S NCR L (60)

Equations (55)-(60) are the gqvern;l.ng‘ differential equations and the
boundary conditions of thé proﬁlom of unsymmetrical buckling of clamped shallow
spherical shells. Existence of a solution for any integer n at a pressure less
than the critical pressure of axil&metrica‘l snapping implies existence of a

critical pressure for unsymmetrical buckling.
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SOME PRELIMINARY STUDIES

Modified Problems

Before the main problem was treated, it was considered advisable to study
aome problems of unsymmetrical buckling of shells with modified boundary
conditions for which the solutions can be obtained analytically. The purpose of
this study is to find whether unsymmetrical buckling rather than axisymmetrical
snapping would controi.in these modified problems. The answers for the critical
. pfellure for unlymmetrieal buckling obtained here can be also used to checﬁ the
‘eccurecy of the numerical procedures for'the'main problem. ‘

In the first modified oroblem the'edge of the shell is edpported by rollers
which can slide along a conical wall without changing the elope along the edge
of the shell as shown in Figure 5. In the second modified problem the edge
_‘condicion is the same as that in the first modified problem except that the edge
:ie imagined to be euddenly clemped just before buckling occurl In both modified
problems the nhell contracts uniformly before buckling end therefore, g*x = 0
" and &% = -2px . | .

.The cri;ioal preolures.for-thene modified problems are.celculeted_for
ne=0, 1,.2 and 3 in Appendix A and are plotted eéeinlé .k in Figures 5 and 6,
where n ‘ie the number of waves along the circumferential direction in the
buckliog mode. In both modified problems it ie found that unsymmetrical bockling
(n#0) dominates for some values of A . These calculated critical pressures
are higher than the classical buckling pressure of a compiete spherical shell.
In the first modified problem the calculated critical pressures meet the
classical buckling pressure periodically at certain values of A and in the

second modified problem the calculated critical pressure approaches the classical
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buckling pressure asymptotically when A approach infinity. In both problems
the results are not realistic because of initial imperfections.

Approximation by Variational Principle

A variational 'principle is developed in Appandix B for a preliminarf study
of the critical pressure of una&nmetrical buckling of clamped ahailov apherical :
“lhella. The boundary dbnditiona (57)‘and (58) of tha'main‘probion vere specified
in the application of thil principle The differential equationa (55) and (56)
are the Euler' s cquationa and the boundary conditions (59) and (60) are the
natural boundary conditions of this variational principle A Rayleigh-Ritz
method is uled in conjunction with the variational principle in Appendix B and
numerical reaults have been obtained for‘~A =6 as ahown in Table 1. Thele
critical pressures for unsymmetrical buckling are lower than the critical pressure
for axisynmetrical snapping, and this certainly tends to confirm the auapicion
.. that unsymmetrical buckling does occur for clamped ahallow apherical ahella
However,'the numerical rgsults obtained by.thia variational principle are not
necessarily either uppar bonnda or,inner bbunds to the exact critical brellure

for unsymmetrical bucblinga'f

NUMERICAL SOLUTION

Difference Equations

The most popular practical method to solve differential equations is to
reduce them to difference equations by confining the range of the indapdndcnt
variables to & network of mesh pointa. In this problem we datino

x = jh J=0,1, ..., N=)/h

where h 1is the mesh size.
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Let o, = « (jh) ; *j = ¥ (jh) ; @% = @*(jh) and $% = §*(Jh) . Using

b J J
uy = uﬁ (61)

The differential equations (55) and (56) at j = 1, 2, ... N can be written as

2 2_4 2

-2 2
w2 0 l¥200 1#2n° , _4n"-n - 1o, n_ 2 SRR - %*!
uy + % uJ xz éj + x3 wj A aa vj + - Vj ‘2 *j‘ (x *j xz VJ)Oj
+ 1 u,d* - 1 v 0% 4 (l‘w' - EE w, ) g’ j=1,2, ..., N (63)
x 33 x 3§ x ] x2 M r !
2 2 2 4 2 2
w2, o 1¥200 42 ., 40 -0 o _ _ _ 1 , .0 l .58 *!
vj + . vJ | xz vj + x3 *5 x4 VJ uJ - aa + xz a3 + (x a3 xz a.>J)9j
+%“j°§ j=1,2, ..., N (64)
The boundary conditions (57)-(60) can be written as
ay - 0 (65)
v nzv
"N'X*r'i*';z_*u'o (67)
kv'-l'rl-v+(2+v)n2]v'+iv -0 (68)
NTxC ‘ N732 N

We shall use the following finite difference approximations for the first and

second derivatives:

Y S
fy=am C 0t fy)

- (69)

el -2, + £ (70 .

3707 B T My i)

The error of these approximations are O(hz) . Equations (61)-(64) can be
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written as

+ B + =0
173

where one fictitious station j = M1 has been added off the edge of the shell

AYin C¥i 3=1,2, ... N (71)

for coanvenience. Equations (65)-(68) can be written as

GyN+1 + l(yN - GyN_1 = 0 (72)
where
rwﬂ
¥y
vy = ., (73)
.VJ- .
-1 0 0 0 W
0 -1 0 0
2 .2 2 '
A, =|142n" _h” .., _hT . .., (74)
J 23 2 " 27 (-84 w9 0
2 2 _
, 142n t2,..0 1
j (1-8%") 23 0 he (1 3)
- 2 0 n2 0o
0 2 0 h2
2 4 2.2 22 2; o '
Bym|-dnsm o BE g B gy p?(e B bzl | 1 ) n3m-Lew | V)
4 2 ) ] 2 33 37 '
[ £ 34 3
22 2 4 :
b ) -4a-n h3(h- + 0% e 11202
J 4 J7) 2
R 3 3
i [ -1 0 0 0
0 -1 0 0
' 2 .2 2 :
- 1 B
G- Hoep Kap o e
2 2
B 1 pw . 1¥2n_ 2,1
27 (1-8%") 213 0 h%(1- 5 |
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r -
0 0 0 0
1 0 0 0
G= L v an
0 YY) 0 0
- - 2 A
-0 I [1-v+ (2+v)n®] o0 Ty
and
1 o o0.0]
0 0 0 0
K=|. oy (78)
0O — o0 1
2
A
2 ,
o & o 0
LA )

From the conditj.onl thit all components of stress resultant and moment are.
bounded at the center of shell, it can be shown that, near x = 0 @ ~x" and
170

*n_~ x.“ . Therefore C = 0 , and the first equutibg of (71) 'Vil.].-lillpl‘.y‘be

A

Y, F By, =0 o : g (719) -

1

.  Determination of Buckling Pressure .

| Vg1 T QarYy a (81
Substituting Bq. (81) into Eq. (71), we get
. - : "
Yy = m(By¥CyQy ) AV
or

' -1
Q = ~(ByHCyQy.y) Ay | (82)
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From Bq. (79)
1

Q, = -B A, (83)
which also can be obtained from Eq. (82) by setting
Qp = 0 (84)
Equation (82) is a recurrence formula by which ;11 Q's can be evaluated.
Substituting Eq. (80) into Rq. (72), ve get
Syg =0 - | o (es)
where ‘
8 = G(I-Qy_;Qy) + KQy o (86)
and I is a 4x4 unit matrix. For a nontrivial solution Y1 40,
8| =0 - , (87)

which is the characteristic equation for determination of critical pressures of
unsymmetrical buckling.
The case n = 1 is a special case where Eqs. (55)-(60) can be satisfied for

all p by an exact solution ®, = 0 and *1 - x ; Since the difference

1
equations are exact for linear functions qu.'(71) and (72) can be satisfied by

. 0
]
3o
—0-
Equation (85) can be written as
[0
1
(s]] (=0
0
0
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for n=1 and so all elements in the second column of matrix 8 vanish. For
n=1,Eq. (56) is reduced to

25" - xw - (xw'-w)8] = 0

9_ 2"._ [ 2
i XV N +TVhx
Integrating from x =0 to x = )\ and using Eqs. (57) and (58), we can obtain
Eq. (60). Thus, for n =1 , Eq. (60) is dependent and can be omitted. We have
Y1
(s] U | = 0

N1

wvhere § is the resulting natrix.obtnined‘by striking out the second column and
the fourth row of the matrix § . For a nontrivial solution,

15| = o (88)
vhich is the characteristic equation for determination of critical pressures for
unsymmetrical buckling for n= 1 .

Numerical Procedure and Results

The numerical procedure of this pfoblem consists of two parts. The first
part is to calculate 0% , §* and their derivn;iven for the axisymmetrical
deformation before unsymmetrical buckling. We used the iterative method given
in Reference (1)*. The Poisson's ratio v was taken equal to 1/3 in all
" calculations and the interval Ax used was 0.25. The first derivatives of @*
and $* were calculated by Eq. (69). The values of Kelvin functions and their
" first derivatives used were found in Reference (12).

In the second part of the calculation, the alements of matrices A

3

L L R T T R T R R e e el et et

The criterion of convergence of the iterative procedure used in this
computation is that the final answer for average deflection agrees to four
significant figures with the mean of the results of the five previous
iterations.
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Cj , G and K were calculated first for different values of n and QJ ;> 8
and ISI could be obtained. In general, ISI does not vanish if the trial value
of p 1is not the buckling pressure Pop* The values of ISI were plotted
against p . The criticql pressure is the lowest root of |S| = 0. When n=1
8 must be caiculated instegd of. S . Thi; procedure continued for.diffcrent
values of n _until nxiaymnetticul snapping occﬁrred before unsymmetrical buckling
appeared.

Two mesh sizes, h = 0.25 and h = 0.125 , were used in the calcu}ation for
A =6 . Since the mesh size 0.25 w#a used in the first part of the calculation,
in the computation for h = 0.125, the yalues of 8% , §* and their first
derivatives at the intermediate stations were obtaiﬁed by linegr interpolation.
The difference of buckling pressures calculated by these two mesh sizes was about
0.1 % . Hence we use h = 0.25 1in our calculation*.

The valid;ty of this numerical procedure was checked by comparing solutions
of the second modified problem in Appéndix A (Fig. 6) with solutions obtained by
this numerical method. Computations were carried out for the c#aeo A=6 ahd
A =10 ard the maximum erFor in P, Wwas 0.6 % .

All numerical calculations were madé on.the IBM 7090 digital computer and
the programming was written in the FORTRAN language. The critical pressures for
different values of )\ and n are given i; Table 2 and also plotfcd in Figure 8.
The lowest valﬁe of these critical pressures at a given )\ 1s the governing
pressure for unaypnctrical buckling. These governing pressures ar; shown by a

heavy line in Figure 7.. Buckling modes wéfe evaluated for these governing

*
‘This choice of mesh size provides a reasonable number of stations within
the boundary layer of the buckling mode.
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pressures and are shown in Figure 8.

According to the results of the calculation,unsymmetrical buckling (n ¥ 0)
does not occur for A < 5.5 . Unaynmétrical buckling starts to appear when X\
is siightly greater thnnVS.S. As )\ keeps increasing the buckling mode shows
more and more waves along ghe cirdumferential dircctioh and also shows a distinct
boundary 1nycr near tho edge of the lhell along the’ radinl direction when )\ 1is
high. An alymptotic analysis has been done in Appendix C where an alynptotic
vilue of thc crit{cal pressure for unlynﬁetgical buckling is found to be 0.864

when A app;oachcaAinfiﬁity, and the ratio n/\A is found.to approach 0.817.

DISCUSSION

Tﬁe>she11 maf anéb-thg;ugh under the‘crigical.pfésaure fpr unsymmetrical
thkling if the tnngeﬁt of the branch on the pressure.deflection curve has a
.. negative élope at thnt critical pfelsure (as shown by the branch CD 1in Fig. 2).
On ;he other hand; if fhat_ffanch has a positive slope (as CE), deformation of
the'ahéll;chanéeu from ;ﬁe axisymmetrical type to the unsymmetrical t&pe suddenly
undef theAcripicgl pressure buﬁ no anapping appears. The determination of thei
branch of préslure-deflection curve involves the analysis of the pont-buckling

behavior of the shell.

-In Figure 9 the relulta of previous attempts to calculate critical pressures

for buckling of shells are plotted for the purpose of comparigon with the present

¢))

results. Gjelsvik and Bodner( ) and Parmerter and Fung calculated the
gritical pressures based on an approximate solution for the cases n = 0 and
n=1. The junctions of curves for n = 0 and curves for n =1 in Figure 9

are represented by tick marks. Weinitachke(lo) obtained critical pressures for
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an extensive range of )\ and n by a method which was claimed to be accurate,
but the buckling pressures obtained in his work are in serious disagreement with
éhe.pr;sent results. It is noted that, for. n=1 the present result is much
closer to the results of References (8)‘and (9) than Weinitschke's ro-ult*. In
.R;fcrencec (7), (8) and (9) the curvgi r;prolenting critical pressures for n = 0
" are shown to be tangent to thdle for n =1 at their junctions. However, this
tangency does not uppoa? in the curve of present work. The present theoretical
buéﬁling pressures are still higher than the experimental results. The effects
of initial unsymmetrical gno-eErical imperfections and variation of shell thickness
are presumed to be{;he source of this discrepancy, but thc analysis of such

. problem i{s very complicated.

More recently, in a private communication, G. A. Thurston stated that he
found a lower bound to the critical pressure P, " 0.753 for n =4

and A = 8 , which is close to the present result Py ™ 0.766 (Table 2).
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APPENDIX A
Analysis of Shells with Modified Boundary Conditions
As mentioned before, in both modified problems
=0 (A1)
§* = -2px (A2)
Substituting them into Eqs. (55) and (56) one obﬁuinl

2

Lo =Ly ~-2pLa (A3)

2
ann - -Lnuh (A4)

The general solutions are expressed in terms of Bessel's functions

x n x -
@ Aan(px) + Ban(u) + Cnx + BnYn(ux) + FnYn(“) + an (AS)
An 2. ,x n En 2 X -n
*n = “—2 Jn(ux) + Bnp. Jn(;) + an‘ + :2- Yn(px) + Fnu Yn(":) + an (A6)
where
1,2, L
Pug G A7)

All components of stress resultant and moment are bounded at the center of the

shell, therefore,

x n
® Aan(p.x) + Ban(p) + Cnx (A8)
An ) 2. ,x n
vn - ;E Jn(px) + Bnp Jn(;) + an (A9)

The boundary conditions of the first modified problem are conveniently
obtained from the principle of virtual work
27 a
] -
fj(Mr nrmebne-.l-nrebnreﬂ-Nrber+Ne§ee+Nt66yre qdW)r drde = 0 (A10)
00
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Using the strain displacement relations we get

2x a

N L]
f f@(rn )"+(—Q)-M'+ = (rM ‘)'-(rN z')! (—Q:)-( z) (N ot )+qr]6il
+ [(rN )! +N ]60 + [(rN '+ﬁe+Nre]6v} r drdé
Zn

{?(rM )’+2M 0 e]bc + [——-((rH )'+2M e-§a+2HNr)+aNr]6§ - .grQW'

+ aNrebv} dog = 0 : ' K : (All)
r=ga .

where ( and ¢ are the displacements along the wall and pcrpondiculnr to the

wall respectively, therefore,

c-‘—Hu-w : _ (A12)

g-u+f—“w - ) . | (A13)

By substitution, we get the boundary conditions

() + 2,'-.4:9 - Mg =0 ' (A'M)
W =0 ' - - : (A15)
g =0 ' (AL6)
Ng ™0 . . (A17)

In terms of the nondimensional quantities, these are

@ =0 ' (A18)

n2
A(Lnaﬁ)' + (1-v) ;E uh =0 (A19)
X*; - Wn = 0 (A20)

L¥, - ALY + (Hn)(aP-l)y + = 0 (a21)
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Substituting Eqs. (A8) and (A9) into Eqs. (A18)-(A21) and eliminating the
coefficient of Dn , we have ;hé following characteristic equation from the

resulting equations

ey o dady
%) + (Lwefaien - % nd + ansdy  @we =0 @)
- 2
Lo .0 Bagrdy by A a=l__ 1
HA Jn(“x) pZXZ Jn(ux). _ A J;(p). " XZ Jn(u) n+l (1+v)k2

The cuaé n=1 1is also a spacial case in the godified problems. However,
Bq. (A22) still holds for n =1 .

The buckling pressures are plotted against ) for different values.of n
in Figure 5. The case n = 0 reprelent; an axisymmetrical Suckling.

The boundary conditions of the second modified probldm are the same as those
of the ;ain problem. Substituting Eqs. (A8) and (A9) into Egs. (57)-(60) and

eliminating the coefficient of D , we get the following characteristic equation

: A
J (1) . qn(“) 1
' | ’ A i ed -
HAT (1)) , W Jn(“)- n 0 (A23)

_ S - 2
n_o, _ n(l4n) ng oy Ay n(l4n)p A _1
MA Jn(uk) 2LZ)\Z Jn(“x) A ‘Jn(u) 2)\2 Jn(p) 1+v

This equation holds for the special case n = 1 but is not applicable for n = 0
where we can show by using Eqs. (55) and (56) that Eqs. (57)-(60) are linearly
dependent. Omitting the last boundary condition aquation (60), we can get the

characteristic equation for n =0 ; which is
M) - 2 3 g d 2. Ly 1y dy - '
BGOSR = L JGAIL6) + A6 DI IIIE) = 0 (A26)

The p__ - A curves for the second modified problem are shown in Figure 6.

cr
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APPENDIX B
Variational Principle for Buckling of Clamped Shallow Spherical Shells

A variational principle for the problem of clamped shallow spherical shells

(13) for the problem of axisymmetrical

(14)

deformation of shells. From a modified Reissner variational principle , we

- was first considered by Weinitschke

can show that Eqs. (45), (46), (49) and (50) are equivalent to the following

variational principle:

s [ {i v Laorts eon )22 2Pumy? LPyn2eibpon J xanr 2aenelve 012 = 0

(B1)
where o*(A) = a*'(\) = 0 is specified. Furthermore, Eqs. (55)-(60) are
equivalent to the following variational principle:

2 n “n a!
6] TR AR 226, e v)(wmw')n(-v)(m )
v2
#3807 Jaw ) fran sl PG ) m 0 )

where uh(x) =- &;(k) = 0 1is specified and variations are taken with respect to

w and vn

In order to apply these variational principles we try

o = (x2-2%) (Ax2+BA ) Y (B3)
vr = cx* + DA% (B4)
@ = Ex (x2 A2)2 (B5)
v, - K ExCon 2t (B6)

Substituting these expressions into Eq. (Bl) and taking variations with




e
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respect to A, B, C and D , we obtain four nonlinear equations for the
unknowns A , B, C and D ; their values can be calculated numerically for
any asnigned p . Substituting Eqs. (B3)-(B6) into Eq. (B2) and taking
variations with respect to E , F , G and H , we obtain four homogeneous
linear equntidnl and hence the characteristic equation from which the buckling
pressure can be determined for any n . The numerical calculation has been done

for A = 6 and the buckling pressures are shown in Table 1.
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APPENDIX C
Asymptotic Solution for Buckling Pressure for
Shallow Spherical Shells with Large A
It is interesting to consider ‘the asymptotic behividr‘of clamped lhalléw
spherical shells when )\ approaches infinity. A boundary layer is found near

the edge of the shell when the shell deforms nxisyﬁnetrically before buckling.

In the region outside the boundary layer the shell deforms essentially by a rigid

body downward dinplﬁceﬂent, hence all components of stress resultant and moment,

except Nr , vanish.
Let
i= $* + 2px

- Bquations (47)-(50) can be written as

9*"+!:l'§:+§"zpe*+§j:

: x x2 x
TG M ISP S
¢+ x _x2 o 2x o

8*x()) = 0

') - { () = 2(1-v)p

(c1)

(c2)

(c3)

(c4)

(c5)

In the region of boundary layer where x approaches infinity, the following

.equationa can be used:
%" + 3 = -2pa%

in - g% =0

o*(\) = 0

§'(\) = 2(1-v)p

(c6)

(c7)
(c8)

(c9)

T i 2 i

RN IRSTTE T T gt e TS T R e
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When p <1 this problem can be solved analytically.. The final results are

1-p ‘
: . -,j (A-x)
ox - 2320 Qo) 12 sin 2R -x) C(c10)
V1+p 2 ‘ .

' iy (*-x) | ,
. § - Z_:Q__;L(l_-v_)_ ..E I:Jl-p2 cos ,/1—;2 (A-x) - p lin,,/}.—;z (A-x)]
/1+p o

or
§*‘ = -2px | (c11)
From Figure 8 it can be seen that a boqn&ary layer nl,o appears in the
buckling mode of unsymmetrical buckling. Let Gb be an effective boundary

layer thickness and

i-x+6b-x (C12)
() =)
dx

then,Ain the region of boundary layer, Eqs. (55)-(60) become

" - 20 o + czw.- V"' + @(l-8%")y + 2pw" - 2p0 w = O . (C13)
*llll - 20 vu + 62* + o - 6(1'9*')(1) - 0 , . (014)‘
w(8,) = 0 o : (C15)
w'(éb) = 0 _ : (c16)
-v"(bb) +ve v(bb) i'O . (c17)
V8D - Ve ¥I(B,) = O (c18)
where ) 7
lim  n.2
o= A= © ()\)

(C19)
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and

ﬂ;n» : i
- (8-x) — ‘ - -
§*' = 2p(l-v)e 2 [‘/%;g sin Jlfz‘(é-x) - cos /l%E (8-x)] (c20)

Also
@(0) = &"(0) = ¥(0) = ¥"(0) = 0 o (eaw)

By the same method as given in the main problem the asymptotic value of
the critical pressures can be evaluated numerically. In the calculation, Bb
was chosen equal to 40. The critical pressures pcr are plotted against ¢
in Figure 10. The minimum of this curve determines the required asymptotic value
of the critical pressure for A equal to infinity which is found to be
Per ™ 0.864 when the ratio n/\ approaches 0.817. The buckling mode is also

calculated and is shown in Figure 11 from which the actual boundary layer

thickness is found to be 12 approximately.
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n pcrlcalculated by variational principle
1 > 0.85

2 0.770

3 | ' . 0.751

4 : 0.850

Buckling Pressures Calculated by Variational Principle for A = 6

Table 1

3
Py




3.8 4 s [ s3] 6 1 s s | 10 1n 12 13 1% 15 16 1 18
. o.za: o.|m o.lm‘o.lu o.'u o.ln ‘°'|" o.|9c o.'oz o.'oo o.'q
0.614 | 0.578 | 0.629 | 0.763 [ 0.995 | 1.068 {1,130 [ 0.94 [ 0.89 [0.84 [0.97 [0.97 |0.99 [0.99 [0.93 [0.91 [o.95
1 0.919 | 1.023
2 0.775 [0.796 | 0.893
3 0.827 10.760 | 0.774 | 0.846 | _
4 0.931 | 0.812 [0.766 | 0.777 ] 0.814 0.899
s 0.902 [0.813{ 0.777 [ 0.776 | 0.800 | 0.841 | 0.872 | 0.900 | 0.929
6 1,000 |0.887 [ 0.816 | 0.780 | 0,776 | 0.798 | 0.826 [ 0.850 | 0.874 | 0.903
7 0.973[0.877 | 0.812 | 0.782 0.780 [ 0.794 [ 0.814 { 0.835 | 0.859 | 0.879 | 0.906
s 1.057 0.810{ 0.790 | 0.781 | 0.790 | 0,807 { 0,828 [ 0.847 | 0.861
-9 0.815 (0,792 | 0.782 | 0.790 | 0.803 | 0.818 | 0.838
10 0.853 | 0.816 | 0.801 | 0.783 | 0.792 | 0.800 | 0.828
1 0.896 [ 0.849 { 0.815 [ 0.797 [ 0.790 [ 0.792 | 0.802
12 0.942 [ 0.892 | 0,843 | 0.814 | 0,800 [ 0.792 | 0.793
13 0.928 [ 0.876 [ 0.843 | 0.818 | 0.800 | 0.794
14 0.918  0.873 [ 0,842 | 0.814 [ 0.803
15 0.951|0.911{0.8720.837 [ 0.818
16 0.945 [ 0.901 | 0.8¢4 | 0.83s
17 0.976 | 0.892 | 0.860
18 0.888
19 0.911

CALCULATED BUCKLING PRESSURRS OF CLAMPED SHALLOW SPHERICAL SHELLS

TABLE 2




FIG.|  GEOMETRY OF CLAMPED SHALLOW SPHERICAL SHELLS
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FIG. 4 STRESS RESULTANTS, MOMENTS AND
DISPLACEMENTS IN SHELLS
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FIG.8 BUCKLING MODES OF CLAMPED SHALLOW
SPHERICAL SHELLS
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